对59例突变的晚期患者的肿瘤活检标本进行了检测,这些患者以前在12上经历过。在38例患者中检测到790。12的中位为103个月,790组和790组分别为74月和136个月。在790和790组之间,之前接受治疗的情况没有差异,包括作为最后线治疗的、以前使用过化疗,或化疗暴露的持续时间。与以前的报告一致,显微镜下的组织学转化是罕见的,一例鳞状转化和另一例混合腺癌小细胞组织学在基线和耐药后都观察到了。
790和790疾病状态的基因组图谱
我们首先评估了我们队列中的体细胞基因组改变与38例晚期突变非小细胞肺癌患者的治疗初期队列的患病率差异。53改变在耐药人群中比治疗初期人群更为普遍。此外,我们检测到与治疗初期肿瘤相比,治疗耐药肿瘤中和编码于14q22的三个基因的基因组扩增率总体较低。接下来,通过比较790和790,我们试图确定先前报道的并确定潜在的新的治疗可处理耐药机制抗的样品。5例患者出现改变,主要发生在790患者队列。在一名患者中,检测到导致外显子14跳跃的剪接位点缺失,外显子14处的转录缺失通过seq数据验证。该患者还表现出染色体臂7p缺失和12q扩增。同样,我们没有在另一名790患者中检测到原发性外显子19缺失858突变,表明失去激活突变是获得性耐药真正罕见的机制。3突变和2扩增是常见的,但基于790状态没有差异,尽管耐药肿瘤中3改变的频率总体上高于晚期治疗未经突变肿瘤的患者。在3突变中,值得注意的是,大多数是克隆的,并且由linr注释为可能致病的综上所述,这表明3信号在介导抵抗中的作用独立于790状态。鉴于1和22共突变在产生治疗抵抗中的潜在作用。然而,我们没有在队列中检测到任何22突变,我们只在790肿瘤中检测到一个1突变。
53改变是在大约一半的突变的肿瘤中发现的早期克隆事件。与790患者相比,790患者53基因突变显著丰富,其中大部分为早期克隆事件,与790患者相比差异有显著性。此外,2和4扩增在790患者中更为常见,且与53突变互斥。这两个基因位于同一染色体位置,负调控53。正如我们和其他人以前报道的,已知的癌症驱动基因突变的数量越多,多变量分析的tp越短。特别是,并发的153改变与790状态无关的密切相关,与最近的一份报告一致。
拷贝数分析发现,是常见的,与治疗初期突变肿瘤中观察到的比率相当。然而,在7名没有的患者中,所有人都是790,并且有外显子19的缺失,这表明的缺失预示着790耐药疾病的出现。在790和790肿瘤之间,基因组不稳定指数没有差异,也没有发现53共突变与ii增加相关。790患者的肿瘤突变负荷高于790患者,可能是由于790队列中的吸烟者数量较多
接下来,我们检查了790患者3q23和790患者14q21与790状态揭示扩增相关的反复焦点扩增和缺失事件。值得注意的是,3扩增在790组高于790组,并且是唯一有统计学意义的水平事件。我们证实了染色体3基因在3臂增加的患者中有较高的表达。为了了解治疗后这些染色体水平改变可能获得的程度,我们再次与治疗前的队列进行了比较。在治疗初始队列中,38例中有7例出现了3增加肿瘤。这一结果明显低于790,但与790患者相似,提示3扩增可能是790肿瘤特异获得的。有趣的是,染色体3含有鳞状细胞系转录因子63和2,是肺鳞状细胞癌的主要特征,但以前与肺腺癌无关。
接下来,我们研究了与耐药相关的突变过程。在肺腺癌中发现了公认的突变特征,即衰老、、双链断裂修复、吸烟和错配修复。与790相比,790耐药肿瘤对衰老信号的相对贡献率更高,这与790点突变的三核苷酸背景下的最高概率核苷酸变化一致。相反,与790肿瘤相比,非衰老特征在790中的比例显著高于790肿瘤,暗示了驱动790抗性的另一种突变过程。总体而言,这表明790耐药性可能不太可能出现在具有较大比例的活跃的非衰老突变特征的肿瘤中。
我们使用数据估计了每个肿瘤样本的癌细胞比例,并使用转录组去卷积方法uer估计和比较了790和790肿瘤中癌症和间质细胞中的基因表达。值得注意的是,我们推测在790肿瘤的癌细胞中,肺腺癌标志基因如、21、2和3的表达普遍且几乎完全丧失。此外,我们观察到鳞状细胞癌或神经内分泌癌的组织学标志基因在一小部分790肿瘤中的表达增加的表达降低。值得注意的是,对三个未接受治疗的腺癌队列的分析表明,低腺癌标志物基因的表达非常罕见,仅在野生型肿瘤中观察到。总而言之,这些数据突显了耐药后获得性谱系可塑性以前被低估的程度,特别是在790肿瘤中,与3扩增和非衰老突变签名过程共存,潜在地促进了表皮生长因子受体独立的信号机制。
鉴于检查点抑制剂在突变的中缺乏疗效,我们试图描述与耐药相关的免疫环境,最初根据“细胞炎症基因表达谱”特征对肿瘤进行分层。
然后,我们使用了一种已发表的计算方法进一步阐明与耐药相关的浸润免疫细胞亚群。这表明,与免疫790肿瘤相比,免疫790中s的推测水平更高,而2的水平更低。免疫790中1、3和的表达也显著高于免疫790肿瘤。接下来,我们调查了耐药时的免疫表型是否与之前12的持续时间有关。有趣的是,免疫790肿瘤的总最短,其中一半的总小于3个月。相反,免疫790肿瘤的总生存期最长,与免疫冷藏790肿瘤相比。et分析强调单剂免疫检查点抑制剂在突变的非小细胞肺癌、78患者中缺乏疗效,这与et分析一致。然而,一名免疫790患者在临床试验中接受了nivlubipiliub免疫检查点抑制剂的联合治疗,并获得了89个月的稳定病情。综上所述,我们的数据提示炎性趋化因子的潜在作用,例如,9可能由s驱动在介导790耐药中发挥作用。此外,我们的数据突出了“热”肿瘤中成分的显著异质性,说明需要更详细地询问免疫环境以描绘特定的免疫靶点。
虽然第三代s越来越多地被采用在一线环境中,但这种临床实践在一定程度上是由于无法预测单个患者的耐药轨迹。在确定了与不同抵抗状态相关的新的分子特征后,我们试图建立一个模型来预测790的出现。我们推测,这些基因组、染色体水平和转录特征可能存在于基线水平,也可能代表在治疗过程中获得的变化。为了进一步探讨这一点,我们确定了在12治疗开始之前可能存在的三个躯干特征:外显子19缺失、缺失和53改变。使用贝叶斯方法,单个患者可以根据他们治疗前的分子基因型被分成不同的组,其发生790耐药的几率非常不同。例如,在非肿瘤中,发生790耐药性的概率在872到979之间,这可能意味着序贯治疗第一代第二代到第三代可能是这些患者可行的临床策略。这些特征的预测能力需要在更大的队列中进一步验证。然而,这些结果说明了数据驱动的治疗算法是如何通过真实世界的证据得出的,并可能有助于为个别患者定义最佳的排序策略。
我们的研究首次对耐药的基因组和转录图谱进行了全面和综合的分析。值得注意的是,我们的数据显示,到目前为止,血统的可塑性在一定程度上被低估了。尽管在耐药后有1到3的患者有组织转化的报道,但我们发现在790肿瘤中,腺癌标志物普遍丢失,同时非tru亚型明显富集。虽然缺乏配对的基线样本是我们研究的局限性,但与治疗单纯的突变的非小细胞肺癌的比较表明,腺癌谱系标志的丢失,特别是在790疾病中,可能代表了慢性暴露导致的早期去分化事件。790疾病更显著的基因组改变有53突变、3扩增和改变,这进一步导致了790的可塑性和耐药性。
临床上特别感兴趣的是790队列中的免疫热亚群,它代表了一组患者的明显较短,其特征是评分高,1过度表达,以及富含趋化因子的免疫抑制微环境。与我们的发现一致,回顾性分析表明1的高表达与低应答率和之间的关系,提示“炎症性”介导对的原发性耐药。最近,抑制信号被发现可以耗竭reg和增加信号,支持“炎性”的之间的联系,认为这是一种适应性变化,可能会削弱对靶向治疗的反应。我们的数据进一步表明,炎性的可能发生在原发或继发耐药时,并由8细胞、reg和可变地组成。最后,观察到1的高表达,特别是在790免疫热肿瘤中,伴随犬尿氨酸的过度表达,暗示途径在维持reg激活和在肿瘤亚群中的免疫抑制环境中起作用。最近,通过对一系列癌基因驱动的非小细胞肺癌肿瘤的单细胞,ynrd和他的同事同样强调了途径、免疫微环境和肺泡再生细胞特征在靶向治疗中的重要性。我们的数据扩展了这些观察,说明了治疗诱导的适应性细胞状态可能会受到基因组改变的影响,并表明癌细胞、免疫细胞群和趋化因子中依赖性和谱系可塑性之间存在复杂的相互作用。为了更好地阐明这些免疫介质的作用,前瞻性研究正在进行中。免疫检查点抑制,包括联合抗1和抗4治疗,在耐药环境下的临床试验中显示明显缺乏疗效。除了正在努力评估腺苷轴的免疫抑制靶点,如腺苷2受体、39和73,未来临床试验的合理靶点可能包括、耗竭策略,如贝伐单抗或选择性抑制3。